California Earthquake Early Warning System (CEEWS) Benefit-Cost Assessment

Presentation to the California Earthquake Early Warning Advisory Board

June 25, 2025

Presenter: Sharyl Rabinovici, PhD Consultant / Project Lead

Sharyl Rabinovici, Ph.D. EEW Expert

Amarnath Kasalanati, PhD Project Specialist

> Selim Gunay, PhD Project Specialist

Laurie Johnson, Ph.D. EEW Expert

Jeri Sawyer, M.S. Economist Dan Acland, PhD Economist External Advisor: Keith Porter, PhD SPA Risk, LLC

Berkeley Public Policy
The Goldman School

California EEW BCA Project: Goals and Methods

What is the current state of EEW operations, use, benefits, and costs?

What opportunities exist to increase system reach and impacts?

- Stakeholder interviews
- Literature review/analysis
- Benefit-Cost Analysis (BCA)

EEW Developments Worldwide and in California

Seismic- and geodetic-based EEW systems in at least 23 nations:

- 10 countries with operational public-alerting systems:
 Japan, Mexico, USA, China, India, Taiwan, Turkey,
 Canada, South Korea,
 Romania, Italy
- 13 countries in development, testing, or restricted use

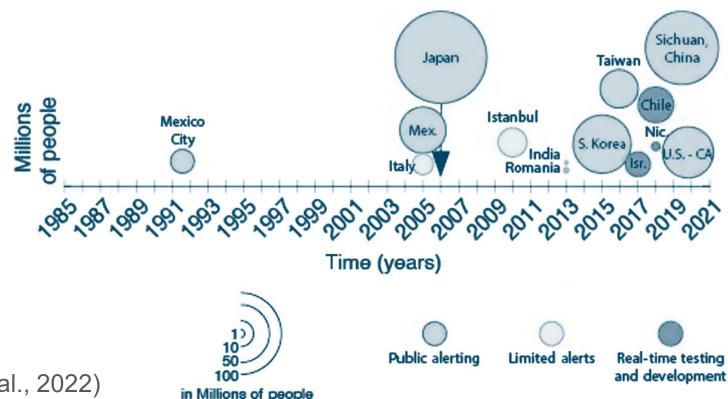


Figure Source: (McBride et. al., 2022)

California's Strong Leadership:

CEEWS powered by ShakeAlert™

- Global leadership on earthquake detection and processing science / technology
- Early and sustained financial commitment
- Leveraged assets and partnerships
- Embedded in public safety / preparedness (e.g., Great ShakeOut)
- Dense instrumentation (90%+)
- Successful alert track record
- Vendor ecosystem
- Growing public interest and support

Qualitative Interview Coverage

 17 stakeholder interviews: 22 people from 14 organizations, including 9 "License-to-Operate" (LtO) technical partners

Category	California	Other U.S. Regions	National	Global
Seismic network design and operation	٧	٧		
Real-time seismic data analysis / alerting	V	V	V	V
EEW program management	٧		٧	
EEW first-tier user / LtO / pilot partners	٧	٧		V
Automated EEW application users	٧			
Human response EEW application users	V			
Emergency managers	٧	٧		
Social scientists		V	V	

LtO Types & Their Importance to Program Strategy

Personal Device Delivery	Specialized Vendor	Add-On Vendor	Institutional	
Use telecom infrastructure to distribute EEW alerts to personal electronic devices	Specific EEW delivery solutions for public and private clients	Integrate EEW into broader multi-hazard notification platforms serving public and private clients	Directly use EEW to protect assets, operations, and persons on-site	
Android/Google	Early Warning Labs	AlertFM	Allen Institute	
MyShake / UC Berkeley Seismology Lab	Kinemetrics	Everbridge BART		
FEMA IPAWS / WEA*	RH2 Engineering	Genasys	Jet Propulsion Laboratory (JPL)	
	SkyAlert	Valcom	JPL Deep Space Network	
	Varius		MetroLink (SCRRA)	

^{*}FEMA IPAWS/WEA is not officially an LtO, but still a critical technical partner for alert delivery.

Quantitative BCA Use Case Coverage & Approach

Use Cases Considered

Personal Protective Action Alerts:

Smartphone Notifications

School Public Address Alerts

Automated Controls:

Mass Transit

High-Rise Elevators

We consistently apply conservative assumptions, rather than "best case" or "best guess"

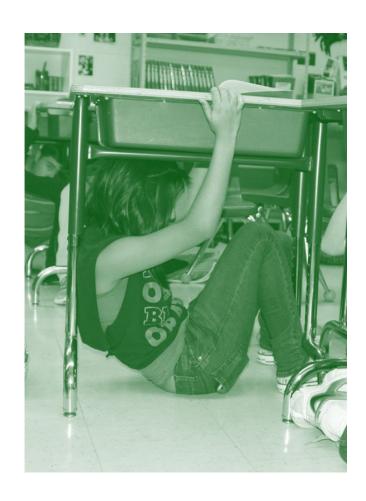
 High confidence in using these numbers to set priorities and make decisions with trade-offs

Use Case Findings: Success with Smartphones

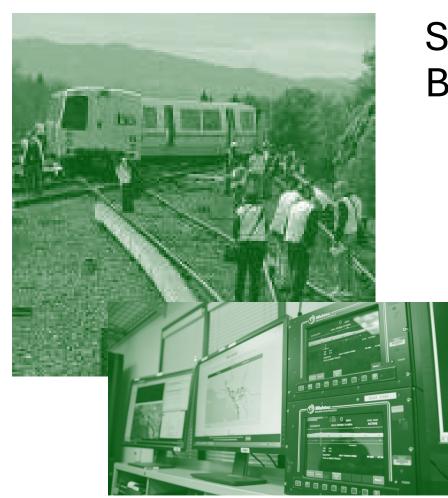
California has widespread, fast, and reliable smartphone notifications with measurable injury avoidance benefits.

Benefits considered: Avoided physical injuries and PTSD

→ Per earthquake, \$574 benefit per person in locations with VI+ shaking that receives a warning of ≥10 sec

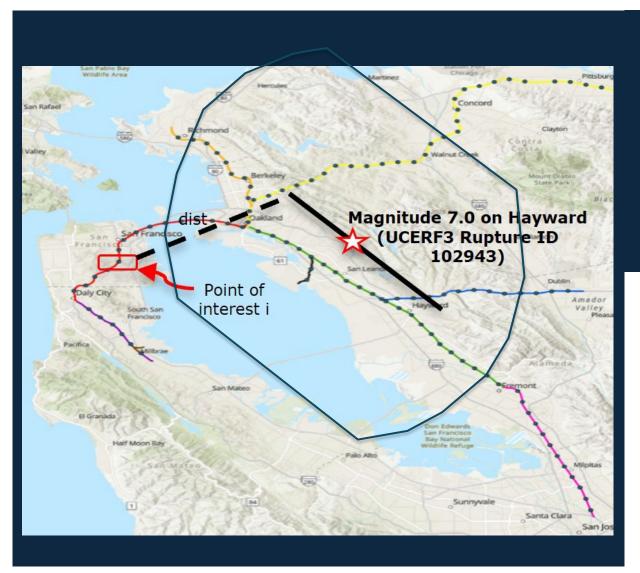


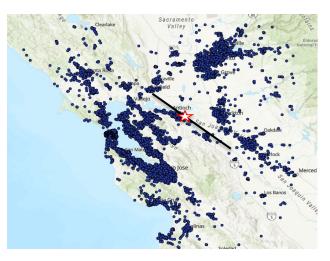
Untapped Potential for School PA Alerts


High importance & low cost; small current benefits due to low coverage.

- <2% public school children</p>
- High non-monetary barriers to adoption
- → \$272 benefit per student at a school with VI+
 shaking that receives ≥10 sec warning

(kids do DCHO better than adults)


Automated Mass Transit Control: Millions of Safer Rides Each Month


Successful implementation for both BART and Metrolink passenger trains.

- Benefits considered: Avoided casualties and PTSD, car replacement
- Benefits depend on train speed when alert is received, predicted shaking intensity, and distance to epicenter

Computation of Benefits for a Use Case & Region

- Calculate distance and alert arrival time for 112 segments in BART network
- Use OpenSHA Intensity Measure tool to estimate benefits for <u>each relevant UCERF3 rupture*</u>
- Calculate the resulting expected EEW benefit for BART using the probability of occurrence of each earthquake
- Similar methodology for the other use cases, but with points of interest being buildings with people, children, or elevators

Magnitude 7.0 on Hayward (UCERF Rupture ID 102943)

Elevator Control Findings

Minimal uptake in this highly regulated, standards-driven market.

- Common in Japan but not elsewhere
- Benefits considered: injury via dehydration from entrapment due to power loss
- Lack of data to estimate additional indirect benefits

Bottom Line

- CEEWS is a comparatively low-cost/high value public safety program that makes unique mitigation possible
 - Public's willingness to pay for EEW to exist implies benefits outweigh costs at least 20-to-1 annually
- Program is positioned to grow its impacts significantly if fortified and focused on high-value initiatives
 - Full report offers many insights/suggestions for CEEWS sustainability, strengthening, targeting, and expansion

Recognition and gratitude to all our research participants and colleagues—past, present, and future.

Your Questions / Discussion

Contact Information & Contributors:

Project Lead: Sharyl Rabinovici, PhD

Email: srabinovici12@gmail.com

Mobile: 650-207-6544

Qualitative Lead: Laurie A. Johnson, PhD (Laurie Johnson Consulting)

Principal Investigator: Khalid Mosalam, PhD (UC Berkeley/PEER)

Geospatial Modelling: Selim Gűnay PhD (UC Berkeley/PEER)

BCA Models: Dan Acland, PhD (UC Berkeley Goldman School)

Research Support: Jeri Sawyer, MS (Greene Economics LLC)

BCA Model Advisor: Keith Porter, PhD (SPA Risk LLC)

